
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-2001-210873
ICASE Report No. 2001-15

A Component-based Programming Model for
Composite, Distributed Applications

Thomas M. Eidson
ICASE, Hampton, Virginia

ICASE
NASA Langley Research Center
Hampton, Virginia

Operated by Universities Space Research Association

May 2001

Prepared for Langley Research Center
under Contract NAS1-97046



Form SF298 Citation Data

Report Date
("DD MON YYYY") 
00MAY2001

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY") 

Title and Subtitle 
A Component-based Programming Model for Composite,
Distributed Applications

Contract or Grant Number 

Program Element Number 

Authors 
Thomas M. Eidson 

Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
NASA Langley Research Center Hampton, Virginia 26381-2199 

Performing Organization 
Number(s) 

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym 

Monitoring Agency Report 
Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
ICASE Report No. 2001-15 

Abstract 
Abstract. The nature of scienti c programming is evolving to larger, composite applications that are
composed of smaller element applications. These composite applications are more frequently being
targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a
group of developers. Software component technology and computational frameworks are being proposed
and developed to meet the programming requirements of these new applications. Historically,
programming systems have had a hard time being accepted by the scienti c programming community. In
this paper, a programming model is outlined that attempts to organize the software component concepts
and fundamental programming entities into programming abstractions that will be better understood by
the application developers. The programming model is designed to support computational frameworks
that manage many of the tedious programming details, but also that allow sucient programmer control to
design an accurate, high-performance application. 

Subject Terms 

Document Classification 
unclassified

Classification of SF298 
unclassified



Classification of Abstract 
unclassified 

Limitation of Abstract 
unlimited

Number of Pages 
14



A COMPONENT-BASED PROGRAMMING MODEL FOR COMPOSITE,

DISTRIBUTED APPLICATIONS

THOMAS M. EIDSON�

Abstract. The nature of scienti�c programming is evolving to larger, composite applications that

are composed of smaller element applications. These composite applications are more frequently being

targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a

group of developers. Software component technology and computational frameworks are being proposed

and developed to meet the programming requirements of these new applications. Historically, programming

systems have had a hard time being accepted by the scienti�c programming community. In this paper, a

programming model is outlined that attempts to organize the software component concepts and fundamental

programming entities into programming abstractions that will be better understood by the application

developers. The programming model is designed to support computational frameworks that manage many

of the tedious programming details, but also that allow su�cient programmer control to design an accurate,

high-performance application.

Key words. software components, computational frameworks, scienti�c applications, computational

grids, distributed computing

Subject classi�cation. Computer Science

1. Focus. Programming e�ciency has been a problem in the scienti�c community for many years.

Attempting to extract good execution performance from state-of-the-art high-performance architectures can

be very time consuming. Distributed computing, especially on Grids [4], makes the situation worse as

heterogeneous computing environments at multiple sites necessitate that a large amount of detail must

be managed by the programmer. The situation is further complicated by the fact that larger, composite

applications are becoming more common [7] [9].

Programming systems are needed to assist with managing this detail. The programming models will

likely be based on higher-level abstractions than currently are common. In this note, a programming model

is motivated that focuses on developing composite applications targeted for Grid environments. This is

not an attempt to de�ne a precise programming language as semantics are only de�ned to clarify the basic

abstractions. Emphasis is on pragmatics, the relationship of the proposed abstractions and their meaning

to the programmer [5].

The more relevant composite applications to the programming model discussed in this note are large,

scienti�c applications that often include high performance computations. These applications typically cou-

ple smaller element applications that focus on a narrow aspect of the larger problem. These composite

applications become challenging from the programming standpoint when the coupling of elements is tight

and a signi�cant amount of data and event transfers are required. Such coupling can be associated with

both data-parallel and task-parallel application designs. The proposed model focuses on programming the

task-parallel aspects while still allowing data-parallel code to be included.

�ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email: teidson@icase.edu). This

research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while

the author was in residence at ICASE.

1



These proposed ideas also re
ect a change in the usage of scienti�c applications. Until the last few years,

most scienti�c applications were developed as a stand-alone package by an individual. Codes were shared

infrequently as results were usually passed via reports. But, scienti�c programming is maturing and the

free-lance programming styles are being replaced by best-practice styles. The resulting increased con�dence

in codes written by others and the need to build composite applications has led to increased code sharing.

2. De�nitions.

1. A programming model is a set of abstractions and a set of rules that specify the combination of those

abstractions in a form that can be translated to create execution instructions for an application.

2. A Problem-Solving Environment (PSE) is an integrated collection of software tools that facilitates

problem-solving in some domain. This includes de�ning, building, executing, and managing the

application. Additionally, this can include viewing and analyzing results related to the problem

being solved.

3. A computational framework is an integrated collection of software tools that facilitates the develop-

ment and execution of an application. A framework is the core feature of some PSEs.

4. An element application is a code in stand-alone executable or library form, that is focused on a

relatively narrow aspect of some physics, mathematics, graphics, or other science.

5. A task refers to a set of user code with one or more entry points (functions, subroutines, methods,

executables).

6. A context is de�ned as a collection of tasks and data packaged for execution and interaction with

other tasks. A Unix process is an example of a context.

7. A platform is one or more computers managed as a single entity that is connected via a network to

other platforms.

8. A composite application is a collection of tasks that would bene�t from being distributed among

several contexts located on several platforms. The application typically includes a range of data and

event transfer operations between the various tasks and contexts that make-up the application. For

this discussion, a data-parallel code is considered as one task that runs in one distributed context on

one multi-node platform. A composite application is generally built by combining several element

applications together under the control of a work-
ow description.

A composite application can be more than just a group of related element applications that share

�les. The element applications can be loosely or tightly coupled via a variety of data and event trans-

fers. The nature of this coupling is a crude measure of the complexity of a composite application.

Physical problems with non-linear, sti� behaviors often result in computer algorithms with complex

communication patterns. The data and event transfers can also be viewed as programming enti-

ties that combine with the element applications to create a composite application. Non-traditional

programming features such as computer resources, �le systems, network performance, usage permis-

sions, and user interfaces can also be viewed as programming entities.

9. Metadata is information about some programming entity that supports its use in some more com-

prehensive program (or meta-program) such as a composite application. Metadata includes interface

speci�cations that describe how to access the programming entity and behavioral speci�cations that

describe conceptual and practical details of correctly integrating the entity into the meta-program.

For example, the information expressed in a Fortran subroutine could de�ne some numerical algo-

rithm. Interface metadata would describe the arguments needed to call that subroutine, typically in

some general language. Behavioral metadata might describe the parallelization strategy as it relates

2



to target machines [3]. Behavioral metadata could even be used to describe physical and numerical

assumptions embedded in the numerical algorithm.

10. A software component is a basic unit of software packaged for use in e�ciently building some larger

composite application. The software package includes metadata that minimally de�nes any interfaces

to that software so that some computational framework can more easily provide the necessary

integration. Software component technology is intended

� to support software reuse and sharing,

� to simplify use of multiple languages,

� to support the e�cient building of large applications, and

� to assist building distributed applications.

Eventually, this technology could enable plug-and-play environments for coupling reasonably com-

plex physics. However, this will require research in a number of disciplines, well beyond the scope

of this paper.

11. A computational Grid is a collection of heterogeneous computational hardware resources that are

distributed (often over a wide area) and the software to use those resources. An important feature

that converts a set of computers and software connected by an internet into a Grid is a set of sup-

port services (resource management, remote process management, communication libraries, security,

monitoring support, etc.) and an organizational structure that provides usage guidelines or rules.

3. Software Components. One solution to providing the 
exibility and e�ciency needed to develop

composite applications is software component technology. The basic technology has been demonstrated by

several commercial products [8]. These products are not particularly suited to the scienti�c programming

needs [1]. In general, the communication performance of these systems is poor to mediocre. They also do not

support all the data types, programming languages, and computer systems that are common in the scienti�c

community. Another problem is that they tend to include lots of baggage (e.g., business related services)

that is not particularly useful to scienti�c applications. Scienti�c requirements tend to evolve constantly

because of the importance of research and development. A solution that can grow on top of a light-weight

core technology is needed. New ideas need to be rapidly integrated without disrupting ongoing work. Finally,

the commercial model is based on application developers creating components and applications that can be

packaged for use by others. This scenario exists to a lesser degree in the scienti�c community as researchers

will need to constantly develop experimental components. A scienti�c computational environment will need

more emphasis on e�cient component and composite application development.

The Common Component Architecture (CCA) Forum [2] is developing a scienti�c software component

speci�cation along with several prototypes to test various approaches. This e�ort has made good progress

at developing a system that meets the above requirements. The CCA Forum has de�ned a lightweight

core design that is very promising. Each of the various prototypes experiment with implementations that

focus on di�erent aspects of target scienti�c applications. One aspect that is not well-addressed is a general

programming model for composite applications. This paper attempts to de�ne such a model.

The CCA speci�cation is still evolving. The CCA focuses on de�ning three types of entities: Compo-

nents, Ports, and Frameworks. The CCA Component is a set of data and code that provides some related

functionality and that is chosen to provide a convenient programming granularity. A CCA Port is used

to de�ne all interfaces between di�erent CCA Components. A CCA Framework is a software system that

provides the functionality needed to couple CCA Components via CCA Ports to form a meta-program, all

based on the CCA speci�cation. A CCA Service is a CCA Component that implements some common func-

3



tionality that is generally associated with a CCA Framework for use by a user-created CCA Component.

CCA Services include communication, discovery, and error handling among others. The CCA Port allows a

CCA Component to de�ne the speci�cations of an interface interaction without naming a speci�c instance

of a CCA Component to which it will be connected. The connection is programmed separately.

4. A Programming Model.

4.1. Approach. Most composite, distributed applications can be implemented via a set of software

components that are controlled by remote requests from some work-
ow program or component and by using

the services provided by some framework. The role of the framework is to manage the connections, which

can be local and remote, between the various components and to provide functionality that facilitates the

programming and execution of the application. A model based on this simple view provides all the features

needed to build most applications but is not particularly satisfactory from a programmer's viewpoint.

The primary problem is that the above approach is too general. A good programming model needs to

balance programming 
exibility with programming e�ciency [5]. Programmers like for the programming

abstractions to suggest good programming construction while also providing 
exible control for a range of

options. Ideally, programming abstractions should match the concepts that a developer has used to design

an application. Additionally, modern programming models need to support team programming. This means

that programming intent needs to be expressed clearly and concisely.

A typical composite application will be composed of tasks (functions and methods), shared memory

(internal task, global variables), �les (external variables), and events (synchronization of behavior), which

are organized into di�erent contexts (processes) and executed on di�erent platforms (computers). Each of

these abstractions will need to be referenced in the user code as well as within the scope of the framework

being used. As an application will contain one or more unique members of each of these abstraction types

or families, it is clear that each family member needs a unique identity to create a precise application.

Additionally, each family member may have multiple instances created as part of the executing application

and each instance needs an identity.

Figure 4.1 shows an example application with two tasks. Task C runs in a \console" context (i.e., a

process on the user's desktop) and Task R runs on a \remote server" context (i.e., a process on some remote

computer). Pseudo-code for Task C that de�nes the work-
ow is shown in Figure 4.2. In this example, Task

C creates two contexts, X and Y, each of which have been con�gured to include an instance of R|R.1 and

R.2. X and Y may possibly execute on two di�erent remote computers. Task C then discovers a handle

to each instance of Task R. A handle is just a referencing variable that the framework library functions

create and use to insure that the correct instance of a task (or other similar family member) is used. Task

C then repeatedly requests that R.1 and R.2 be executed concurrently inside a loop until the work-
ow

objective is satis�ed. Task programming can also be multi-layered as either instance of Task R can also

make framework requests. This example also shows a relatively simple strategy for programming multi-

threaded distributed applications. Initiation of some \use" procedure for one or more instances of di�erent

Programming Components can be started concurrently. A \wait" procedure can be called at some later

appropriate point before accessing the results of that \use". Each \use" can be managed by the framework

via a separate thread.

In a distributed application, a server context is often used to run one or more tasks. A control loop

(Figure 4.1) in the server context executes continually and waits on signals to start the execution of the code

encapsulated by a task. This is often more e�cient than starting each task in a new context.

The above task programming concept is similar to the component programming concept found in most

4



Console Context

Task C

Server Context X

Task R.1

server controller

Server Context Y

Task R.2

server controller

Fig. 4.1. Task Programming in a Framework

Arguments ri[2], ro[2]

Handle HX, HY, HR1, HR2

HX = Create_context("X") // HX - a handle for Context X

HY = Create_context("Y") // HY - a handle for Context Y

HR1 = Discover_task("R",HX) // HR1 - a handle for Task R.1

HR2 = Discover_task("R",HY) // HR2 - a handle for Task R.2

while(1) {

Create_input(r1)

Execute_task(HR1,ri[1]) // Execute_task - "use" procedure

Execute_task(HR2,ri[2])

<other computations>

Wait_on_elements(HR1, HR2) // Wait_on_elements - "wait" procedure

ro[1] = Get_results(HR1)

ro[2] = Get_results(HR2)

if (Results_satisfactory(ro)) break

}

Fig. 4.2. Pseudo-code for Work-
ow Program

software component systems, both commercial and prototype. One problem with many software component

systems is the tendency to hide any speci�cs about the context in which a speci�c software components exe-

cutes. For well-developed applications where the user is merging loosely coupled components, this approach

is satisfactory. But, science is about complex phenomena in which low-level constructs are tightly coupled

and high-�delity applications are generally needed to best model complex phenomena. If high-�delity ap-

plication development is to bene�t from software component technology, programmers will need to have

5



some control over the location of tasks. Historically, the organization of data layout and the control of data

transfers has always been the focus of performance optimization for scienti�c applications. It is di�cult

to believe that heterogeneous networks with widely varying performance levels and composite applications

created from a smorgasbord of codes can be successfully used with a programming model where data 
ow

can be ignored.

4.2. Description of a Programming Component. Based on the ideas expressed in the previous

section, a programming model is proposed. The model primitives, referred to as Programming Components,

will encapsulate user-de�ned code, data, and events along with desired programming services. A Program-

ming Component will consist of an entity, both physical and abstract, along with metadata that can describe

information needed to locate, create, and execute any software and hardware related to the application. Pro-

gramming Components are selected to best match the concepts typically used by application developers to

express their intent when designing a composite, distributed application. Programming Components will

generally map to most software component designs. Herein, the CCA Model has been speci�cally targeted.

Programming Components enable the speci�cation of all the entities of a component-based application

in a compact and portable form. Traditional applications and the entities from which they are built are

primarily de�ned by a set of code and �les along with documentation on how to execute their interfaces.

While these de�nitions can come in many forms, they all are reasonably compact mainly because they are

programmed using a single programming language. Composite applications are more complex for no other

reason than they are typically created from a greater number of element applications that are unfamiliar

to the developer. When multiple languages, heterogeneous computer architectures and operating systems,

and distributed computing environments are involved, a large amount of organizational detail needs to be

included in the application de�nition. This information is fundamentally di�erent from the algorithmic

details that is the primary content of user code. The proposed Programming Component model is intended

to provide a mechanism to express, separately via metadata, this organizational detail in a manner that a

computation framework can best glue the di�erent entities into a composite application. The metadata will

be referred to as a Shared Programming De�nition (SPD) to emphasize its value in de�ning an application

outside the scope of a framework.

4.3. Extension to other Entities. In Figures 4.3, 4.4, and 4.5, an example is shown where information

transfer is done separately from the control 
ow. The control 
ow would be similar to that shown in

Figure 4.2. In this case, the second computations in Task S have some dependency on the �rst computations

in Task R. Typically for performance reasons, it is sometimes desired to have the information 
ow be separate

from the control 
ow. In other words, it is faster to let Task R notify Task S directly. This is often true for

both data transfers and event signals.

When the two Tasks, R and S, are written, it is important to use a programming model and style that

supports the development of an accurate and e�cient application. There needs to be assurance that the

framework providing the communications knows that Task S should be noti�ed when Task R signals Event

E. A Registry Service can be used for Task R to publish the existence of an instance of the event and for

Task S to discover it, but this does not resolve the programming dilemma. The programmer of Task S needs

to know the identity of Event E to program a discover request. Also, the use of Event E in Task S should

be based on an understanding of the meaning of Event E; i.e., a behavioral speci�cation of the event. While

the above information could be shared by word of mouth, a more formal representation will be essential if

associated with the development of a large composite application where tens or hundreds of programming

entities are involved. Additionally, this information or event metadata needs to be associated with Task R.

6



Console Context

Task C

Server Context X

Task R

Server Context Y

Task S

Control Flow

Information Flow

Fig. 4.3. Information and Control Flows

Handle HY, HR, HS, HE

HY = Discover_context("Y")

HR = Discover_this_task()

HS = Discover_task("S",HY)

HE = Publish_Event("E",HR)

<first computations>

Signal_event(HE, HS)

<second computations>

Fig. 4.4. Pseudo-code for Task R

Handle HX, HR, HE

HX = Discover_context("X")

HR = Discover_task("R",HX)

HE = Discover_Event("E",HR)

<first computations>

Wait_on_event(HE)

<second computations>

Fig. 4.5. Pseudo-code for Task S

If Task R is used in multiple applications, the Event E metadata needs to be available to the programming

team for each application.

But, an event is not owned by a piece of code. Several Tasks could generate an event with the same

meaning. From a code development prospective, the programming of an event is no di�erent than the

programming of a call to execute a function or task. Both provide functionality (behavior) of a speci�c

program entity (with identity and state) that can be requested (via an interface) and that is outside the

7



scope of the current code. The coding of this request creates a dependence (relationship) between the

current code or component and some external code, event or other programming entity. More precisely, a

Programming Component is de�ned as an abstraction describing a well-de�ned programming entity that

possesses the following properties.

� behavior

� identity

� an interface

� state

� relationship

Behavior is the value provided by a Programming Component. A Programming Component cannot

be accurately used without a well-de�ned behavior. Particularly for scienti�c applications, behavior goes

well beyond an understanding of how to use an interface. A programming model that emphasizes interface

speci�cations trivializes the assumptions and concepts that were used to develop code being accessed via

the interface. The primary purpose of the interface is to allow precise control for the behavior of another

Programming Component to be accessed. State is important to allow for a wide range of functionality to

be provided by a minimum number of Programming Components. State can refer to con�guration where

information in metadata can be altered to a�ect the behavior of an entity. State can also refer to internal

variables within the entity that a�ect behavior during execution. These are important since they are typically

controlled via an interface. However, state can also refer to the physical condition of some Programming

Components. A piece of code could be in source or object form. A computer could be on or o� line. A �le

could be in a readable form or encrypted. Additionally, Programming Components can have relationships.

A piece of code that reads a �le has a programming relationship with that �le. The programming of the

composite application is not complete until the correct instance of a conceptual �le (or a procedure to

determine the correct instance at runtime) is identi�ed. Additionally, programming is needed to assist the

framework in putting the correct instance in a location that is accessible by the code. Finally, the need for

identity is the primary guideline used to determine if an entity or functionality will be a useful Programming

Component.

Some software component systems tend to emphasize the independence of each component. Such a

characteristic provides a very 
exible programming environment. For practical reasons, a programming

model should re
ect the nature of its target applications. The physics' models simulated by scienti�c

applications include coupled constructs and as such the most natural and useful component granularity

will sometimes result in component dependencies.

4.4. Proposed Programming Components. Examples of several Programming Component families

are given below. The Shared Programming De�nition for each Programming Component family includes a

unique identity along with con�guration speci�cations. These speci�cations include interface, behavioral,

and reference details. Each Programming Component would be programmed by calling some framework

library in a manner suggested by the pseudo-code shown in the previous �gures. The interface details would

describe how to program the variable portion of the framework library functions. A common example is

the argument list of a software component method execution. An Interface De�nition Language (IDL)

is often used to specify the interface details [6] [8]. The SPD approach would extend the IDL approach

to allow the speci�cation of key information relating to how a Programming Component accomplishes its

results. Such behavioral speci�cations may include computational details (a data-parallel code), numerical

details (the type of algorithm), or physical details (model equations include certain assumptions). Finally,

8



information specifying related Programming Components is needed to insure that all families of a coupled

set of Components are included in an application. This could be another Task Component that computes

required inputs with su�cient accuracy or that must be run concurrently to exchange information. Other

references may restrict a Task Component to certain Platform Components that de�nes a set of acceptable

computer characteristics for that Task.

The code needed to execute the functionality de�ned for each Programming Component will generally

be part of Service Components supplied by the framework. The SPD of each Programming Component

provides any con�guration details for the Service Component. The Task Component is an exception as it

also encapsulates user-written code.

� Task

A Task Programming Component maps to the basic task or software component concept described

above. It is the abstraction that encapsulates user-written code. A general model would allow the

user code to be in source, object, or executable form. The user code could be single-threaded, multi-

threaded, or data-parallel. The Computational Framework may or may not have control over any

concurrent code, depending on the available framework services.

� Data Set

Scienti�c applications deal with very large data sets. Often there is not su�cient memory to make a

copy of a data set. Scienti�c applications also will use several independently written codes to operate

on such a data set. These independent codes could be packaged in di�erent Task Components. If one

Task owns the data set, then programming 
exibility will be a problem. A special Task Component

could be used to own this data set. However, a detailed description of the data set would be needed

in the SPD. Rather than overload the Task SPD, a separate Data Set Programming Component,

that is focused on the data management role, is included in the model. Framework services would

be available that allow data to be copied and linked into and out of the scope of Task and Data

Set Components that are in the same context. Services would also provide data transfers between

di�erent contexts.

When the data set sizes are small enough to allow several Data Set Component instances to exist in

the same context, other programming 
exibility bene�ts are available. One Data Set instance can

be locked for use by an executing Task while another instance can be part of a data transfer. This

allows the overall composite application to be programmed in a loosely coupled style as the code

execution and data transfer may be triggered by work-
ow in di�erent locations.

� Event

An event can be used to relay both control and data information. The encapsulation of the event

concept as an Event Programming Component is done to provide a lightweight programming alter-

native to remote executions and data transfers. The Event Component behavior is intended to be

implemented using an Event Service Component, which supports direct Task-to-Task signals as well

as a message board to support event bu�ering. Broadcasts to groups should also be supported.

� Context

Scienti�c codes often require performance solutions and distributed applications will generally ben-

e�t from optimized solutions. Organizing Task and Data Set Components for optimal locality to

minimize data transfers may change in detail for di�erent network scenarios, but it will almost al-

ways be important. A Context Programming Component can be used to group Task and Data Set

Components so that they execute in the same context. A Context Component can be used similar to

9



an object in most object-oriented languages. It encapsulates methods and data together to support

good overall program organization, but it allows codes written in di�erent languages to be e�ciently

coupled in the same context.

� Platform

One modern distributed computing goal is to relieve the user of the need to be concerned about

the speci�c computer on which a code is run. But, performance concerns necessitate programmers

specifying the locality of Tasks. Some locality concerns can be solved by the Context Component.

However, the cost of transferring data between di�erent Contexts can vary signi�cantly and addi-

tional control is needed. Sometimes di�erent Tasks may need to be in separate Contexts but still

close together, where close is de�ned based on network performance. They may need to be on

the same speci�c computer or just on two computers that are close. Other practical concerns also

exist such as license issues, locality of �le resources, architecture-speci�c coding, and proprietary

restrictions.

A Platform Programming Component is used to de�ne a virtual computing resource on which a

Context Component is to run. It can be de�ned by a speci�c IP address or it can refer to a pool

of computers that is selected at runtime by some framework or operating system software based on

requirements speci�ed in a SPD. A Platform Component will tend to be hard-wired in the SPD of

the Context Component. However, some applications will need to map a Context to a Platform at

runtime based on parameters, such as grid size, that are passed to the related Context, Tasks, and

Data Sets.

� Site

Performance and organization have been a recurring theme in the above discussions. System software

can only make good decisions when given su�cient information. Communication performance is

highly dependent on the type of network over which it travels. Ultimately, network metadata will be

needed for a framework to make optimal performance choices for an application. A rough estimate

of network performance can be made by assuming that all computers on the same local area network

(LAN) are \closer" together than those on di�erent LANs. Additionally, information relating to �le

system organization can be useful to a framework. This includes de�ning �le servers and cross-

mounted �le systems.

A Site Programming Component is used to de�ne a group of computers (or Platform Components)

located on the same LAN. The Site SPD includes information about �le systems, compilers and

schedulers.

� File

A File Programming Component is useful for many of the reasons that a Data Set Component is

needed. A File Component just encapsulates data stored outside the scope of a Context Component.

This can include the standard �le concept, but also can be used to de�ne information retrieved from

a database or other entity. Similar to a Platform Component, a File can represent concrete entities

or it can represent virtual information that must be chosen at runtime. Like a Data Set Component,

it is useful to include speci�c format information in its SPD. This will allow Service Components to

provide File to Data Set transfers via simple interfaces.

� Application

An Application Programming Component is useful to package the complete de�nition of an appli-

cation. It would include a list of all necessary user Programming Components and any framework

10



requirements. Work-
ow, data-
ow, and other organizational information as mentioned above is

included. Alternative Components, usage suggestions, and documentation can also be included that

will create a complete package.

The above items provide a reasonably complete set of primitives needed to fully de�ne many composite

applications. Other programming entities will also be useful but were not explicitly de�ned in this paper.

These include user information to support access permission needs, separately started user interfaces that

need to join an application, check-pointing support to de�ne safe stopping points, and interactive support

to aid in debugging, monitoring, and steering. The key feature that determines the need for a speci�c

Programming Component is identity. Speci�cally, a Programming Component will need to be referenced,

directly or indirectly, in multiple places in a user's code for the purpose of requesting desired functionality

from a framework.

A side objective of Programming Components and their Shared Programming De�nitions is to support

portability from one framework to another. Ideally, one would like to move an application between frame-

works with no con�guration required. An appropriate choice of Programming Components should at least

result in a minimal con�guration needed by a framework in addition to importing the SPD information.

4.5. Framework Services. One of the positive features of the CCA approach is that the framework

services can be built as CCA Components. This should allow a versatile set of services to evolve. These

services are key to the success of the component approach. Services can encapsulate computer and computa-

tional science functionality that is needed by sophisticated applications, but which is viewed as burdensome

overhead by the application developer. Application scientists just do not have the time to become skilled in

all aspects of an application. A set of primary services needs to be designed that provide simple interfaces

to a limited, but commonly used set of functionality. Advanced services can then be developed to replace

the primary service when specialized functionality is needed.

Example of base framework services include the following.

� A registry service is needed to share the existence and location of Programming Component in-

stances.

� Management services are needed to create, to destroy, and to otherwise manage remote processes

and threads.

� Runtime services are needed to bu�er information such as logs, queues, status, and availability.

� Interactive services are needed to provide monitoring, steering, and debugging functionality.

� Communication services are needed to provide con�gurable connections with appropriate perfor-

mance and functionality.

� Information services are needed to store Shared Programming De�nitions for convenient access by

a target group.

Base framework services are only the starting point. Individual programming communities can build

services that are speci�c to some numerical technique or physics. For example, a discipline data service

could be created that de�ned several standard data formats and translation services between those formats.

Task Components could be created to work with some or all of the formats. Two Tasks that used di�erent

formats could be integrated using a translation service.

4.6. Ideas Relating to Program Organization. Clearly, a good programming abstraction will col-

lect lower-layer detail in a modular form that has bene�cial organizational e�ects. Generally, models with

minimal interactions between abstractions are easier to understand and to learn. However, it is those inter-

actions that typically provide useful, sophisticated functionality. The choice of the content of a component

11



must be carefully chosen to �nd an appropriate balance between clarity, performance, and programming

e�ciency.

Most composite applications will have a main program or script that orchestrates the execution of the

entities represented by the various Programming Components. This is a primary part of the application

work-
ow that de�nes all instructions to the framework. The work-
ow is not restricted to a main program

(say a Console Task Component) as it can be distributed throughout the user Task Components. The

work-
ow can also be described via application metadata. For example, the Application SPD could include

a list of Context Components of a server type that should be started by the framework before the Console

Component is started. The use of desired framework services can be speci�ed in the work-
ow.

While the application is basically de�ned by the work-
ow, the complex nature of scienti�c applications

will sometimes result in application designs with information or data 
ows that do not follow the control


ow implemented by a primary work-
ow program. A feature of some Software Component systems is the

concept of a port. Each Task Component de�nes one or more ports to represent virtual interactions with

external entities. For example, a function call would be made by referencing a speci�c port that represents

an interface of some Programming Component, but not a particular instance. A separate step is needed to

tie this \uses port" to an instance of a Programming Component that implements and registers a \provides

port" of the same type that interfaces to the desired function. The port concept is not limited to function

calls as it can be used to de�ne all external interactions such as data transfers, event signals, and input and

output with a �le. It is useful to label the \function call" example as a work-
ow port and the second group

as data-
ow ports. This labeling expresses a message of intent between the programmer and the system

developer to infer that data-
ow ports need higher performance. The coupling of the ports provides the last

piece of the application de�nition. Static connections can be provided as part of the Application SPD, but

a Registry Service Component is useful to provide dynamic connections.

While speci�c design choices will depend on the nature and goals of each application, most composite

applications will be large and performance will be important. Frequently, the critical requirement in achieving

good execution performance is the data 
ow. Control 
ow models where data or data variable references

follow the execution path from function to function is one popular approach. However, a large amount of

scienti�c codes also use separate data 
ow paths to transfer access to data between functions that are far

apart in the calling sequence space. For example, common blocks in Fortran and global scope in C have

provided this functionality. The labeling of ports as mentioned in the previous paragraph will support this

mixed control/data 
ow style.

4.7. Compiler Issues. To access the behavior of a Programming Component, the programmer will

need to include a call to some function or method. One approach is to provide a library that can be

programmed by passing the identity of a Programming Component instance along with some parameters

to request a speci�c desired behavior. This approach can be augmented with con�guration details located

in the metadata associated with the related Programming Component family. This dynamic style provides

a great deal of 
exibility. However, a number of Software Component systems use an Interface De�nition

Language (IDL) to store the metadata. An IDL compiler can then be used to generate a stub function that

is loaded with the calling code. The user's code must also be modi�ed to call this stub function. The stub

function approach provides a custom interface to the Programming Component and it allows for potentially

better performance as the overhead of using component methodology can be reduced to one extra function

call if the calling and the requested code are in the same context. Because of the tendency of composite

applications to be distributed and the desire for execution 
exibility, it is suggested that a dynamic, library

12



style should be the target model. Where performance is critical, the stub function approach can be provided

as an optimization.

The programming 
exibility suggested in the previous paragraph leads to another suggestion. Current

Software Component systems tend to treat traditional compilation as distinct operation in the building of a

component or composite application. Clearly, there is much to be gained from compilers that are built around

component concepts. At a minimum the need for a separate IDL compiler would disappear. All Programming

Component behavior requests could be programmed via framework library calls, but using syntax recognized

by the compiler. The compiler could then use the metadata associated with the Programming Component

and any other Components with a relationship to generate the best code. Additionally, the metadata

could contain compilation suggestions and execution history that could bene�t the compilations of a Task

Component, both directly and indirectly.

5. Summary. The general scienti�c programming community will require e�cient software systems

to successfully develop composite applications in Grid environments. The proposed ideas on programming

models are intended to help bridge the gap between the software component ideas being developed and the

practical nature of the computational scientist. The exact nature of the programming model and languages

that need to be created will probably be the result of feedback between the system software developers and

the computational scientist. However, prototypes with good programming models need to be made available

to seed this feedback.

Acknowledgments. The author would like to thank the many scienti�c programmers and computer

scientists who have discussed programming with him over the years. Also, the many contributions to the CCA

Forum are appreciated as the CCA provided a foundation on which the author's ideas could be expressed.

REFERENCES

[1] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and

B. Smolenski, Towards a common component architecture for high-performance scienti�c computing,

in Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999.

[2] CCA, Common Component Architecture Forum webpage, in http://www.cca-forum.org, 2001.

[3] C. Cicalese and S. Rotenstreich, Behavioral speci�cation of distributed software, Computer, (1999),

p. 46.

[4] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann Publishers, 1995.

[5] J. Sammet, Programming Languages: History and Fundamentals, Prentice-Hall, 1969.

[6] J. Siegel, CORBA: Fundamentals and Programming, John Wiley and Sons, 1996.

[7] J. Stewart and H. Edwards, The SIERRA framework for developing advanced parallel mechanics

applications, in Proceedings of First SandiaWorkshop on Large-Scale PDE-ConstrainedOptimization,

Springer Lecture Notes in Computational Science and Engineering, 2001.

[8] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison-Wesley, 1998.

[9] R. Weston, J. Townsend, T. Eidson, and R. Gates, A distributed computing environment for

multidisciplinary design, in 5th AIAA/NASA/USAF/ISSMO Symposium on Multiple Disciplinary

Analysis and Optimization, September 1994.

13


	edoc_995979928.sf298.pdf
	Form SF298 Citation Data


